162 research outputs found

    Charge-conjugation violating neutrino interactions in supernovae

    Get PDF
    The well known charge conjugation violating interactions in the Standard Model increase neutrino- and decrease anti-neutrino- nucleon cross sections. This impacts neutrino transport in core collapse supernovae through "recoil" corrections of order the neutrino energy kk over the nucleon mass MM. All k/Mk/M corrections to neutrino transport deep inside a protoneutron star are calculated from angular integrals of the Boltzmann equation. We find these corrections significantly modify neutrino currents at high temperatures. This produces a large mu and tau number for the protoneutron star and can change the ratio of neutrons to protons. In addition, the relative size of neutrino mean free paths changes. At high temperatures, the electron anti-neutrino mean free path becomes {\it longer} than that for mu or tau neutrinos.Comment: 14 pages, 2 included ps figures, subm. to Phys. Rev.

    Diluting Cosmological Constant In Infinite Volume Extra Dimensions

    Get PDF
    We argue that the cosmological constant problem can be solved in a braneworld model with infinite-volume extra dimensions, avoiding no-go arguments applicable to theories that are four-dimensional in the infrared. Gravity on the brane becomes higher-dimensional at super-Hubble distances, which entails that the relation between the acceleration rate and vacuum energy density flips upside down compared to the conventional one. The acceleration rate decreases with increasing the energy density. The experimentally acceptable rate is obtained for the energy density larger than (1 TeV)4^4. The results are stable under quantum corrections because supersymmetry is broken only on the brane and stays exact in the bulk of infinite volume extra space. Consistency of 4D gravity and cosmology on the brane requires the quantum gravity scale to be around 10310^{-3} eV. Testable predictions emerging within this approach are: (i) simultaneous modifications of gravity at sub-millimeter and the Hubble scales; (ii) Hagedorn-type saturation in TeV energy collisions due to the Regge spectrum with the spacing equal to 10310^{-3} eV.Comment: 36 pages, 1 eps fig; 4 refs and comment adde

    Scalar, electromagnetic and Weyl perturbations of BTZ black holes: quasi normal modes

    Get PDF
    We calculate the quasinormal modes and associated frequencies of the Banados, Zanelli and Teitelboim (BTZ) non-rotating black hole. This black hole lives in 2+1-dimensions in an asymptotically anti-de Sitter spacetime. We obtain exact results for the wavefunction and quasi normal frequencies of scalar, electromagnetic and Weyl (neutrino) perturbations.Comment: Latex, 14 page

    Modern topics in theoretical nuclear physics

    Full text link
    Over the past five years there have been profound advances in nuclear physics based on effective field theory and the renormalization group. In this brief, we summarize these advances and discuss how they impact our understanding of nuclear systems and experiments that seek to unravel their unknowns. We discuss future opportunities and focus on modern topics in low-energy nuclear physics, with special attention to the strong connections to many-body atomic and condensed matter physics, as well as to astrophysics. This makes it an exciting era for nuclear physics.Comment: 8 pages, 1 figure, prepared for the Nuclear Physics Town Hall Meeting at TRIUMF, Sept. 9-10, 2005, comments welcome, references adde

    An Improved Brane Anti-Brane Action from Boundary Superstring Field Theory and Multi-Vortex Solutions

    Get PDF
    We present an improved effective action for the D-brane-anti-D-brane system obtained from boundary superstring field theory. Although the action looks highly non-trivial, it has simple explicit multi-vortex (i.e. codimension-2 multi-BPS D-brane) multi-anti-vortex solutions. The solutions have a curious degeneracy corresponding to different ``magnetic'' fluxes at the core of each vortex. We also generalize the brane anti-brane effective action that is suitable for the study of the inflationary scenario and the production of defects in the early universe. We show that when a brane and anti-brane are distantly separated, although the system is classically stable it can decay via quantum tunneling through the barrier.Comment: 24 pages, 1 figure, JHEP3.cls; v2: references added, tunneling rate discussion expande

    The repulsive nature of naked singularities from the point of view of Quantum Mechanics

    Full text link
    We use the Dirac equation coupled to a background metric to examine what happens to quantum mechanical observables like the probability density and the radial current in the vicinity of a naked singularity of the Reissner-Nordstr\"{o}m type. We find that the wave function of the Dirac particle is regular in the point of the singularity. We show that the probability density is exactly zero at the singularity reflecting quantum-mechanically the repulsive nature of the naked singularity. Furthermore, the surface integral of the radial current over a sphere in the vicinity of the naked singularity turns out to be also zero.Comment: 11 page

    Computational Nuclear Physics and Post Hartree-Fock Methods

    Full text link
    We present a computational approach to infinite nuclear matter employing Hartree-Fock theory, many-body perturbation theory and coupled cluster theory. These lectures are closely linked with those of chapters 9, 10 and 11 and serve as input for the correlation functions employed in Monte Carlo calculations in chapter 9, the in-medium similarity renormalization group theory of dense fermionic systems of chapter 10 and the Green's function approach in chapter 11. We provide extensive code examples and benchmark calculations, allowing thereby an eventual reader to start writing her/his own codes. We start with an object-oriented serial code and end with discussions on strategies for porting the code to present and planned high-performance computing facilities.Comment: 82 pages, to appear in Lecture Notes in Physics (Springer), "An advanced course in computational nuclear physics: Bridging the scales from quarks to neutron stars", M. Hjorth-Jensen, M. P. Lombardo, U. van Kolck, Editor

    Decoherence and CPT Violation in a Stringy Model of Space-Time Foam

    Full text link
    I discuss a model inspired from the string/brane framework, in which our Universe is represented as a three brane, propagating in a bulk space time punctured by D0-brane (D-particle) defects. As the D3-brane world moves in the bulk, the D-particles cross it, and from an effective observer on D3 the situation looks like a ``space-time foam'' with the defects ``flashing'' on and off (``D-particle foam''). The open strings, with their ends attached on the brane, which represent matter in this scenario, can interact with the D-particles on the D3-brane universe in a topologically non-trivial manner, involving splitting and capture of the strings by the D0-brane defects. Such processes are described by logarithmic conformal field theories on the world-sheet. Physically, they result in effective decoherence of the string matter on the D3 brane, and as a result, of CPT Violation, but of a type that implies an ill-defined nature of the effective CPT operator. Due to electric charge conservation, only electrically neutral (string) matter can exhibit such interactions with the D-particle foam. This may have unique, experimentally detectable, consequences for electrically-neutral entangled quantum matter states on the brane world, in particular the modification of the pertinent EPR Correlation of neutral mesons in a meson factory.Comment: 41 pages Latex, five eps figures incorporated. Uses special macro

    Strong evidences of hadron acceleration in Tycho's Supernova Remnant

    Get PDF
    Very recent gamma-ray observations of G120.1+1.4 (Tycho's) supernova remnant (SNR) by Fermi-LAT and VERITAS provided new fundamental pieces of information for understanding particle acceleration and non-thermal emission in SNRs. We want to outline a coherent description of Tycho's properties in terms of SNR evolution, shock hydrodynamics and multi-wavelength emission by accounting for particle acceleration at the forward shock via first order Fermi mechanism. We adopt here a quick and reliable semi-analytical approach to non-linear diffusive shock acceleration which includes magnetic field amplification due to resonant streaming instability and the dynamical backreaction on the shock of both cosmic rays (CRs) and self-generated magnetic turbulence. We find that Tycho's forward shock is accelerating protons up to at least 500 TeV, channelling into CRs about the 10 per cent of its kinetic energy. Moreover, the CR-induced streaming instability is consistent with all the observational evidences indicating a very efficient magnetic field amplification (up to ~300 micro Gauss). In such a strong magnetic field the velocity of the Alfv\'en waves scattering CRs in the upstream is expected to be enhanced and to make accelerated particles feel an effective compression factor lower than 4, in turn leading to an energy spectrum steeper than the standard prediction {\propto} E^-2. This latter effect is crucial to explain the GeV-to-TeV gamma-ray spectrum as due to the decay of neutral pions produced in nuclear collisions between accelerated nuclei and the background gas. The self-consistency of such an hadronic scenario, along with the fact that the concurrent leptonic mechanism cannot reproduce both the shape and the normalization of the detected the gamma-ray emission, represents the first clear and direct radiative evidence that hadron acceleration occurs efficiently in young Galactic SNRs.Comment: Minor changes. Accepted for publication in Astronomy & Astrophysic
    corecore